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1. Introduction

Previous work on linear regression models where the parameter

space is r’~stricted by linear inequalities has concentrated on

inference from the sampling point or’ view. For th is model the least

squares estimate is a solution to a quadratic programming problem [10].

This estimate has a mixed type sampling distribution (i.e., partly

continuous and partly discrete) that is difficult to handle analytically,

even assuming normal errors. The standard test for significance of

coefficients based on the Student-t distribut ion can be very misleading

[12). Even moments of the estimate are difficult to derive [io , i6] .

Although much work has been done on Bayesian analysis of regression

nodels, nothing has appeared when the parameter space is restricted.

This paper gives an analysis using a natural conjugate prior of the

.nixed type. Emphasis is placed on determining posterior probabilities

that constraints are binding an~ on determ ining poster ior dis t r i but ions

Df the parameters. An analysis is also given for a vague prior of the

fixed type.

The basic model is presented in section 2 and examples are given

in section 3. The likelihood, the prior, and the posterior are discussea

in sections 4, 5, and 6 respectively . Section 7 applies the theory

to analyze temperatures of a chemical reaction.

2. The Basic Model

The observations are assumed to follow the standard linear model

y XB + e
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2.

where y ’ = (y1,. . ~~~~ B ’ = ( B r , .. ~~~~~ X = (x 1 ... x ), and

e - N(O,T ’I). The parameter space

= ( B :  CB > f)  (2.2)

is assumed to be nonempty , where C is an r x p matrix.

It will prove convenient in the sequel to separate the u~i-

restricted from the restricted parameters. Thus, we assume that the

last p - p0 columns of C are all zeros so that C can be written

C = (C 0 0)

where 0 is an r X (p - p0 ) dimensional matrix of zeros and

• c~ = (d1 ... dr)~ 
If the parameter B is partitioned into restricted

ani unrestricted parameters, B ’ = (Bk , S~~) with = ( B 1,.. ~~~~~
and X is similarly partitioned into (x1X2 ) then the model (2.1)

can be written y = X1B 1 + X28 2 + e with Q = [ B: c0B 1 ~ 
f I .  The

likelihood for the model can be written

L (B ,T~y) XT
n/2 e cp [~~~~T (y-XB )’(y-XB )/2) i(Q) (2.3)

• where I is the indicator function.

We assume throughout that p0>O since otherwise there are no

re stricted variables, and the standard Bayesian analysis applies

[e.g. 4, section 11.101.

The constraint i (1<i<r ) is said to be binding if

= f~ where I” = ( f r , . .  
~~

•t’r)~ 
In certain applications it is of

interest to determine which constraints are bthding. Since a Bayesian

approach to the problem is adopted here, we compute the posterior

t •



3.

probabilities of the various possible sets of binding constraints.

Throughout this paper we will assume that C0 is of full

rank, that s = Li1,.. ~~
ik} is a set of non-binding constraints,

and that ~ = 

~~k+1’~ ~~~~ is a set of binding constraints.

We can write the binding constraint equations as

• C 8 1 = f (2.4)

with

= tk÷1 
and = (f 1 , .  .

If r-k~~1, the set of B satisfying (2.4) is a hyperplane of

dimension smaller than p. Thus, if the posterior distribution on

3 is absolutely continuous with respect to p dimensional Lebesgue

measure, the posterior probability of the constraint s being binding

is 0. To alleviate this problem , the prior distribution will be

chosen of the mixed type with positive probability on these singular

subsets. Dickey [5] gives a bibliography of previous uses of priors

~f the mixed type.

3. Examples

.3.1 Time Series Modelling

The autoregressive process of order p (AR(p))

p
= 

~ ~~~~~ + B
~+j

+e t t= 1 ,...,n

with y0,. . .,y1~~ considered as non-stochastic and et iid—fl (O ,1 1
)

~an be written in the form (2.1) with B ’ = (
~~ ,. . .,B~~1) and

‘

~~~~
‘ T~ 

- - • • •
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T
O ~

‘l-p ~

x =  . .

~
‘n-1 ~n-2~ 

y~_~ 1

We will consider the case p = 2  (i.e., AR(2)).

The value s of (81,B 2) determine if the time series is

explosive. In fact, the series is explosive if B c2 where
1-1 -i. o \

is given by (2.2) with C= ( ~ -~~. o ) and

‘ I -
’L/

= (-1 ,-1,-1). If one is wil l ing to assum e a priori  that the

time series is not explosive, the assumptions of section 2 are

satisfieth Even though the matrix X is stochastic, the likeli-

hood can be written in the form (2.3). Since the theory of

section s 4-6 is still valid for stochastic X matrices, the non-

explosive AR(2) is an example of the model introduced in section 2.

Zeilner [15, section 7.3] computes numerically the posterior

probability of the series being explosive assuming = 0 and using

the vague prior

-1
p( B 1,B 2, T )  ~ T

He notes that a similar analysis could be perfo rmed using an

thformative prior , such as the conjugate normal/gamma. Using any

prior for (B 11B 2) that is absolutely continuous with respect to

two dimensional Lebesque measure, the posterior probability of any

of the constraints being binding is 0. This seems unfortunate

_________________________ 
-S  — - - - -
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since Box and Jenkin .~ [2] demonstrate empirical ly that models

with binding constraints are useful in modelling and forecasting

both economic and phys ica l  sys tems.  In the present  problem

= ( i 3  corresponds to a difference of order 1 and ~ = [1,3)

corre sponds to a d i f f e r ence  of orcier 2 , where the Kt~ d i f f e r e n c e

~~ of the ser ies  is given by z~ = (l_B)k 
~~ 

and 3~ y~ =

Fcr example , ~ = (1) implies B 1+ B 2 = 1 so that the AR (2) can be

written

- (1 _ S j )z t_ i  =

where z .~ = ( 1 _ B ) y t . Thus the first d i f fe rence  follows an AR( 1)

model.

Box and Jenkins choose between competing models by sampling

theoretic cr i ter ia  such as goodness of f i t  tes ts  and residual sum

of squares. From the Bayesian viewpoint model selection can be

accomplished by the computation of posterior probabi l i t ies .  The

forecast  functions of the various models can be combined in the

standard method. Namely , the predictive density of the future

observations ~ is given by

p(
~ Iy ) ~ z p ( s~ y ) p ( ~ ’I y , s)

5

where p(~~y,s) is the predictive density of ~ given constraints

s are non-binding and p (s~y) is the posterior probability of

constraints s being non-binding.

This example is continued in section 7 where series C

f r om [2] is s tudied.

-- --~~~-- . - ____  
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3.2 Polynomial Regression

Stevens [14] derive s the model

p
Aw/(1-x) = ~ B~~x~~ (3.1)

j =1

where Aw is the difference in we ight concentrations of a solute

and x is a dimensionless constan t which can be cons id e re d known

[14 , equa tion 2 ] .  The parameter  space is ( 2 . 2 )  w.tr,

11 i=j
C = ( c r 4 )  a p x p matrix with C .  . = ~ 1 j1+ 1

~~ L O  otherwi se

and f=0 [14, equation 4]. If the ith constraint is binding

(B i = B~~1)~ a polymer of i t imes the bas ic molecul ar we ight

is not present  in the par t icular  molecule.

Based on equation (3 .1) eithe r of the following models may

be appropriate

(a) 
~i 

= ~w1/(l - x1) = 

~ 
B~
xi~~
’ + ei

1(b) y. = = ~ B~~x~~ (1 -x i) +1 j=1 ‘.)

where e — 7?(O,T 1
1). These models are both of the form ( 2 . 1) ,

and model (a) is the standard polynomial regression model with

restricted parameter space.

The choice of the order p of the polynomial regression

is also of interest  in this  problem . Halpern [6] discussed choice

of the order in the unres t ric ted  polynomial regression using the

natural no rmal/gamma prior.  The analogous metho d could be used in

the res t r ic ted case.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3.3 Transition Probability Estimation

Juige and Takayama [10, pp. 176-8] use quadratic programming

to obtain the least squares estimate of the transition probabilities

ot’ a finite Markov Chain. We conside r the chain with 3 states and

demonstrate how the theory of this paper applies. Judge and

Takayama show the equation s

3
= 

.~~~ ~~~~~~ ~~ 
+ ujt for i < j < 3, 1 < t

i=1

can be written in the fo rm

~7 =  ~~p +u  with

= (y~ , y~ , y;), p
’ = (pt, p~ , ps), u

’ = (ui , u~, u ),

= (Y j,i’”’’Yj,n)’ i~ 
= 

~
P1j’P2j’~3~

)’ u~ = (ujj~
...

~
ujn)~

(xi o o \
= ( ~ x1 a ) where = (z 1 z2 z3) and

0 o x1/

z~ = (Yj,0i~ . .

Since p1+ p 2 + p 3 = i , one can eliminate p
~ 

and write these

equat ion s as ’ (2.1) with

fx~~~
o

y’ (y~ , y~ , Y ;_ l
’x’), x = 0

-xi. xi.

- 
- - 

-~~~~L - ~~~~~~~A -. — --- _
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= (pj,p~ ), 
and e=u . The inequality restriction s are of the

form (2.2) with

C = ( 16 and 1” = (o’,_ i )

~
_I
3 ~~~ 

)
where is the kxk identity matrix and is a k vector of

one s.

3. LI One Way Layout

Con side r the 1 way fixe d ef fec t  ANOVA mo del

= B i + eu i=1,.. .,p and j=1,. . .,n~

with B 1 fixe d an d ei~ i.i.d. — fl(o,i 1). We assume a pr ior i

that the means are non-decreasing (i.e., B1 < B 2 < ... <B
r
). This

constrain t can be written in the form (2.2) with C = (c1~ ) a (p-I) xp

dimensional matrix with

(1 j=i+1
cii = and f=O. An example or’ the use of

0 Otherwise

this model is given in [1, example 1.3].

Other linear restrictions can be handled similarly . In the

case of monotone decreasing parameters, Lindley [11] discussed the

posterior distribution of the parameters assuming a vague prior.
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4. The Likelihood

The following theorem expresses the likelihood in a form

which suggests the natural conjugate prior 01’ the mixed type to be

employed. It shows that the likelihood for B € S can be specified

by a=p-r+k parameters which, in general , Can be picked in different

way s.

Theorem 1

For any set s of non binding constra ints  there ex ists a

subset (j1,... ,j 3 of (1,2,... ,p) such that if = . and
a

= (r ~
, . .  . ,r ~ ) then the likelihood (2.3) can be expressed as

~~~~~~~~~~~~~~~~ exp{-T (z-R~)’(z-R’~)/2) 1(Q). (4.1)

The event Q can be expressed as the set of linear inequalitie s

= ~~~~ > w) (4.2)

where D is a kx a 2 dimens ional matr ix, y ’ = (4,y~), a~ =

dimension for i=1 and 2, a1 = p - p 0, an d a2 =p 0+k.- r.

If either of the dimension s 01’ D is 0, 1(Q) 1. The n dimensional

vector z is a funct ion  of X and y.

To be precise the quantities z, R, D, w, and y should be

subscripted to denote which of the possible sets or’ size a has been

picked. We assume throughout that a rule has been established for

p icking the variables so that the subscrip t can be surpressed without

confu sion.

- -- T T t~c~%.~~~ - — 
“~~.- - .-- -

- -- -  
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Proof: Since the matrix C0 was assumed of full rank, the

number  of binding constraints satisfies 0 < r - k< p 0
. It is con-

venient to separate the proo f into the following three ca ses.

Case 1 r-k=O (no binding constraints)

Since r > 1 and p0 > 1 by assumption , one has rnin[a2,k 3> l

in this case. The proof follows by defining z=y, R= (L X2),

for i=1 and 2, D = C, and w = f.

Case 2 1 < r - k < p 0

We can p ick column s E = [ j1,.. ‘‘~~r-k~ 
of C~ defined

in (2.L~), so that the resulting matrix is nonsingular. Let ~ be

the complement of E (in [1,2,... ,p0)) and define matrices

as column s E of C~ (C5) and similarly

as column s E of C~ (C5)

where C’. = (d i . .. du ). If k=O , C21 and C22 are degenerate.

Defin ing vec tors = (B . ,“.. . ,B~ ), 
~~ 

= ( B .  ,.. ,~3 . )
r-k ‘~r-k+1

and 1’~ = (f~ ,. . ., f~ ), for k>O the constraints can be written
1 k

C11B 3 + C12y2 = -

+ C22
y
2 > f

Using the above equation s to eliminate B3 
one obta ins

-1
= C11 (f~~ - C 12y,).

—
~~~~~~~~~— .,‘

- _ _

_ __ t~~_
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The nonbinding constraints can be w r i t t e n  as Dy 2 > w where

~22 
- C~1Cj~ C1~ and w = 

‘
~~~ 

- C21C1~ f~

Now define X
3

(X~ ) as columns E(~~) of X so that

= z = X2B2 + X3
C~~ (f~~-C 12y2) + X4y~ = Ry + X

3
C~~ f-

with R = (X 2 X4-X3C~~C12) and y ’ = (B~~,v~~). Thus y -~~ = Z - R v

with z = y - X 3C~~~f~~. The res t  of the proof follows easily ifl th is  case.

For k = 0 the proof is analogous .

Case 3 r-k = p0 ( r e s t r i c t e d  parameters  complete ly  spec i f ied)

In this case E is empty so that C12, C22, and as

deftned in case 2 don ’t exist. One has that

= C~~f~

and, the inequality constraints  can be wr i t t en  as

C~1C~~ f~ >

which ~eterin ine wh~ ther the const ra in ts  can be binding together or not.

LettIng R = X2, ~ = 

~2’ 
and z = y - X

3Cj~
f5 the resul t

follows. 

~~~~~~~~~~~~~~~~~~~~~~~~

.-
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5. The Prior

The likelihood of Theorem I. suggests a prior of the

mixed form. Let p(s) denote the a priori probability of the

set of constraint s s being non-binding. Since p(y,Tjs ) determines

p (3,’r) s), it suffices to specify p (y,TIs ), which we assume to be

the natural  conjugate p r io r  suggested by

Theorem 1. Probabi l i t ies  of events and distributions of parameters

~an be calculated in the usual way . The following theorem evaluates the

~onstant of integration for the natural conjugate prior. This constant

is necessary to calculate the Bayes factor for determining posterior

odds of the d i f fe ren t  sets of binding constraints.

-Theorem 2. Let y ’ = (y~ ,y~ ) where y 4 has dimension arid

consider a p rior of the following form

p ( y , T I s )  = C T(~~
a)/2 1exp(_ i(bu + (y-a) ’V(y-a)) /2) 1(a) (5.1)

fv11 v12
where V = f is a positive definite, symmetric matrix,

\ 
v21 v22

V~~ has dimension aj x a j  1 
~ 

j , J 
~ 
2, a’ = (a~,a~) where ai

has dimension and

Ii. minLa2,k) = 0

I(
~ I(Dy2 >w ) otherwise

Then the constant of integration c is given by

—S. ~_ _ ~~~~
- -
~~~~~~~~~~~

;; 
~~~~~~~~~~~~~~~~~~
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c~~’ = 
fc ± min[a2,k) = 0

( c1p ( Q )  otherwise

whe re

c~ = r(u/2)(2~~~
/2

/I VI l/2(ub/2 )
u/2

and P(Q), with Q as in (4.2), is compute d us ing the distri but ion

“2 
— Ta (a2,V221/b,u). That is, y2 is an a2 dimensional

multivariate t random variable with mean a2, precision V221/b,

and u degrees of freedom [4, pp. 59-61]. The dimension of the

multivariate t random variable often is omitted in the sequel.

Proof: If min(a 2,k) = 0, the parameter space is unrestricted so
that the prior is the standard normal/ga~mna and the constant is easily

evaluated. For the case min[a2,k) > 0, integrating the unrestricted
para meters y1 one obtains

a /2 (v+a0)/2
= (27r) 1 Iv11 I~~ $j’T exp(-T((y2-a2)’V221(y2-a2)+b~ )/2)

I(Q)d’r dy2

where V221 = V22 
- V~1V~~V1~. Integrating out T and recognizing

the multivari ate t f orm , one has

= (2~~) 2~~ r ( v / 2 ) ( I v11I~ v2 2 1 I )_ * (~~/2 )_ v/ 2  1f(y 2 I a 2, V2 2 1~~~, v)dy 2

where f (y 21a2,V2 2 1/b,v) is the density of where
Thus = c1P( ri ) where P ( c~) is computed as in the stateme nt of the
Theorem .

- 

- -
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The following corollary shows that P (c i) of Theorem 2 can be

computed (if r < p 0) using the c .d .f .  of the multivariate t dis-

tribution with mean vector equal to 0 and diagonal elements of the

precision matrix equal to 1. Approximations to the c .d . f .  in this

case have been given by John [7]. In the case r ) p 0, DY2 has a

degenerate mu.ltivariate t distribution so it is sore convenient to

compute P ( c~) using the a2 dimensional distribution of y 2 ( rather

than the distribution of DY 2 ).

Corollary 2.1

If r ( p 0, P (a) = F(_ w j -Da2, (DV~~~1D’)~~/b,’.,) where F( (a ,p , v)

is the c. r~.f.  of a T(a ,P,v)  distribution. Furthermore , if the pre-

cision matrix Z = (DV~~~l D tY l/ b = ( a ij) is written as A A A ’ with

A = (o~~ ~~ where is the Kronecker delta and

= (~jj/(aj jajj)*) then

P(a) = F(A (Da2-w)IO ,A ,v).

Proof: If k < a 2 = p0 - r + k , then Dy 2 
— Tk (Da 2, (DV~~~lD ’) / b ,v)

(see , for example , [13, Theorem 6.2.1]). Thus , if p0 > -r ,

P(~~) = F(-w I -Da2, (DV~~~1D ’)~~ /b ,v ) .  Since ,~D( y 2-a2 ) T(0 ,~~,v ) ,

P (o) = F (A(Da2-w)IO ,~ ,v).

As stated above in the case r > p 0, it is more convenient to

choose a different trans formation f rom t hat given in Corollary 2.1.

If the precisio n matrix Z = V2 2 1/b is factored as in Corollary 2.].

(= A A A ’), then U = A  (y 2 - a 2 ) — T ( O ,~~,v ) .  Under this transformation

the region O= (DA ’
~
1u>w - Da2). Thus, the inequalit ies on u are

linear so that the region is a polygon or an infinite region with

planer boundaries. John [8 ,9] has given methods for approxin~~ting

- —r 

-

_ _ _
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the probability P(u€ r~) where u has the above distribution.

In the case min [cZ2,k )  0 the prior of Theorem 2 reduces

to the standard normal/gamma. In the restricted case the distribution

of the parameters is more complicated and is given in the following

corollary.

Corollary 2.2

If minta2,k )  > 0, conditional distributions of the parameters

and y
2 

are

( i)  V ~s — T (a2,V2 /b,v)I(c2), a mu.ltivariate t distribution ,2 a2 2.1
with the parameter as given , truncated to the space (4 .2 ) .

(ii ) The p .d . f .  p ( v 1j s )  of Y1 given s is

p ( v 1I s )  = f (y 11a 1, V11 ~/b ,~~) g ( Y 1)

where f is the density of the multivariate t and

g(y 1) = P(DY 2 > w )  where y2 T(a 2 1 , (v+ a,)V22/ ( b v + ( Y 1-a1) ’

V],1 2 (y 1-a1) ) ,  v + a 1) and a2 1  = a2 - ~~~~~~ (Y 1-a1).

Proof: (1) was shown in proving Theorem 2.

(ii ) By integrating out T one has

p ( y I s ) ~~( ( y- a ) ’ V(y -a )  +V b )~~~~~~~/2 
~~~~

Using the identity

(Y- a) ’ V (Y- a) = (y 1-a1) ’ V1 1 2 (~ 1-a1) + (y 2—a2 1 )’V22 (y 2-a2 1 )

one has

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vb)~~~~~l
)/’2

S _
~~ - ~

- ---____  

-

-~~~ 
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- (v+a )/2

(y 2-a2 1)’ V (y 2-a 
~~( 1+ 22 2. 

~ dY2 (5 .2)
vb + (~ 1-a1) V11 2 (y 1-a1)

The f irst  term on the right hand side of’ (5 .2)  is proportional to

and the second is proportional to

It is instructive to compare these distributions with the ones

obtained in the unrestricted case (i.e. , 1(a) 1 in (5 .1)) .  In the

unrestricted case the distribution of y 2~ s is T (a2, V2 2 1/b ,v )

which is the same as in (i)  modul o the restriction. Similarly, the

density of y1~ s in the restricted problem equals its density in the un-

restricted problem times the function g(y 1).

Corollary 2.2 shows that pick ing the constants (a ,V,v ,b) of the

prior (5.1) is considerably more complicated than picking the constants

in the unrestricted case. The following simpler prior is useful when

prior knowledge about the parameters (given the constraints) is vague.

Box and Tiao [21 use similar priors as reference priors . Of course , in

repeated experiments the posterior of the first experiment can be used

as a prior distribution for the second . Since the prior (5.1) is con-

ju gate for the likelihood (4.1), it is useful in analysis of repeated

experiments.

Corollary 2.3

Let a be as in Theorem 2 and assume that the Lebesque measure

m( c2 ) < ~~~. For a prior density of the form

(v+a,)/2-].p(y , i l s )  = c 0’r e x p [ — r ( b v + ( ’y’1—a1)’ V11(V 1-a1))/2 ) 1(a) (5.3)

then one has

1 (c2in (O) mln(k , a2 ) > 1
Co (c 2 min fk ,a2 ) = 0

_ _
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a / 2  1/2 /with c2 = (�ir) 1’(v/2)/ 1V111 (b~ /2) ”~

Proof’: The integral of (5.3) is easily evaluated since (Y 1,r), which

has the standard normal/gamma form , is independent of V 2.

Note that the constants of’ the prior (5.3), unlike (5.1) can easily

be picked since

¶ 15 — rV/2,bV/2

and -

y118 — Ta (ai,Vii/b ,v ) .

The prior (5.3) can be obtained from the more general (5.1) by

setting the elements of V12, V22, and a2 equal to 0, changing a to

cx1 and modifying the constant of integration. Similarly, the posterior

distribution using prior (5 . 3)  can be obtained from the posterior using

prior (5.1) by the same specification. This will be utilized in the

next section .

6. The Posterior

Since the conjugate prior distribution was assumed in section 5, the

posterior distribution is of the same form as the prior. Thus , distri-

bution results obtained for the prior distribution ( i . e . , Corollary 2 . 2 )

are valid for the posterior distribution with modified constants.

Theorem 3 gives the rule for updating the constants in going from the

prior to the posterior distribution .

Theorem 3. Using the likelihood (4.i) and the prior (5.1) one obtains

a mixed posterior with

p(y,T 1y,s)oc(~
)
~~~

/I’2_1 exp (r((y— ’
~)’V(y—i) +~~~)/2) 1(0) (6.1)
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with constants ~ = v+ fl, V = V + R ’R , ~ = V ~~~(Va + R ’z ) ,  ~~= ( vb+Q)/~
where

Q = (:-F~ )’(z—Rç’) + (a-’~ ) ’ V(a-’~ ) + (~‘-~~) ‘ R ’R( ’?-’~ ) and ~ is the OLS

estimate (R ’R) ~~~R ’z.

Proof: Follows by combining the likelihoal with the prior and completing

the square in the exponent (see [16, p.308 1 for a calculation of Q).

Using prior (5 .3) the posterior density p ( y , T I s ,y)  is of the

form (6. 1) but with the following modifications in the constants.
V 0

Let V = (~h1 ~) and a ’ = (a~,O’) then ~~~~~ and Q are as given

in Theorem 3 and ~~~~~= n + v - a 2 .

The following theorem gives (up to a multiplicative constant ) the

posterior probability of the binding constraints. Zeilner [15, section

10.41 gives a similar analysis for unconstrained linear regression .

Theorem 4. Using likelihood (4.1) and the prior (5.1) the posterior

probability p ( s l y )  of constraints s being non-binding is given by

p ( s l y )  ccc 3 ( s )  p ( s )  where

(C4 ~ (a)/ P (a )  minfa 2,k ) > 1
c = c ( s ) = ~ 

—

min(a2,k )  = 0

P( 0)  is computed as in Theorem 2, ~ (0) is the probability of the same

event using the distribution V2 — T(’~2,V221/~,~~) where the constants

are given in Theorem 3, and

= r( /2) (~b)~~
2

! V I 1~
2/(~~(~ /2) (~~~)V/2 _

~ 

1/2

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Proof: For min [a2,k) > 1 one has

p(s ,’y’ ,T~y)~ cp(s) ~ 
(v+a)/2—J. exp (—r(~~ +(y— )’V (y— ~’)) /2)1(a)

where c = c ( s )  is given in Theorem 2. Using the method of Theorem 2

to integrate out (V ,r) one obtains

p(s~y) ~ p(s) r(/2) (2~~~~~~~(a ) / (  IV l~~~
2 (~~~/2)~~~

2 c1P (0) )

A similar argument gives the re~u1t in the case min[a2,k3 = 0.

It follows easily from Theorem 14. that the Bayes factor of model Sj

to model s~ is given by 03 (Si)/C 3 (S j ) .  The rest of this section

deals with the case when the prior information is vague . Corollary 4.1

specializes the result of Theorem 4 to the case when us ing prior (5 .3) .

Corollary 4.1. Using likelihood (4.1) and the prior ( 5 . 3) ,

p(s (y) ~ c3(s)p(s)

(°4 ~ia)/ni(a) min (k ,a~ ) > 1
with c = )

7~ C4 min[k,a2) = 0

with
/ a / 2  —

c .  = r(~/2)iV11I~~
2(~b)

’
~
’ 2 

~~
, 2

~“ ~~
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with ~,V ,b as defined following Theorem 3 and ~ (a)  as in Theorem 4

with modified parameters .

Proof: For minfa2,k) ) 1 one has

p (V,T,sjy) ~~0
/21 exp[-T(~~~+ (y-~~) ’V(y-~ ))/2)I(0)

with ~~~~ as above and c0 given in Corollary 2.3. Integration with

respect to (V,r) gives the result.

In many situations the prior opinion about (Y1,T) will not depend

on s. In this case the expressions for the posterior probabilities of

the various models are somewhat simpler.

Corollary 4.2. Using prior (5.3) and assuming b ,v , and V11 are the

same for all s , then p(s~ y) is given as in Corollary 4.1 with

a / 2  —

C4 = r(~ /2) 2 / ( I V I ’~
2 (~~~~

2 )

Proof: The quantities Iv1i I l~
/’2 , (Vb)v/2 and F(v/2 ) are the same.

Before experimentation, knowledge about Y1 and T may also be

vague . This situation can be characterized by small values of b,v,

and V11. We can approximate the situation by letting all these quantities

converge to zero. By Scheff &~s Theorem, the limiting values then serve

as approximate probabilities in the case of vague prior information.

Corollary 4.3. The limit of c4 (in corollary 4.2) as v -
~~ 0, b -

~~ 0,

and V11 
-

~~ 0 (i.e., all coordinates go to 0) is given by

c4 r((n-a2)/2) 
a2/2 1/2

where Q. = (z-R~’)’ (z-R ~?). 

?~~ ‘ ‘~~‘ .-.- - --~~~~~~~~ - — - -- 
_

_ _ _ ~~~~
_ ‘

~~~~ ~~
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Furthermore , ~ (0) of corollary 4.1 converges to P(D V 2 > w )  where

— T(y2,(n-a2)V221/Q, n-a2) and V221 is computed from V = R’R.

Proof: Taking the limit of the above expressions , one has ~~~

‘ 
-

~~ n - a2,

V -
~ R ’P , ~~ -* Q, and ~ 

-
~~

A reasonable sampling theoretic approach to model selection is

through maximum likelihood. Although the m .l.e .  of (~~,T )  can be

computed using quadratic programming, to contrast the Bayesian and

sampling methods it is instructive to calculate the m.1.e. of (V ,i,s).

For fixed s the unrestricted maximum of the logarithm of the likeli-

hood (4.1) is (ignoring an additive constant )

q(s) =-n(1+M Q/n)/2

where Q = (z-R~’)’(z-RS’) and ~ is the OLS estimate. The m.1.e. of s

maximizes q(s) (i.e., minimizes the residual sum of squares) over

those s such that (D~2>w). If any of the theoretical constraints

are violated using the OLS estimates for the parameters, the model is

not feasible and can’t be selected. This is somewhat unfortunate since

sampling error could lead to violation of a constraint if the true

parameter is near the boundary of the parameter space.

The Bayesian method does not completely rule out models which have

a constraint violated by the OLS estimate. Gross violation of a con-

straint does lead to a small posterior probability. For example,

using the approximate distribution of Corollary 4.3

P(O) F(A (Dy2-w)I O,~ ,n-a2)

where A and A are determined as an in Corollary 2.1 with precision

matrix (n-a2)V221/Q from Corollary 4.3. If a component of A(DY 2-w)

is less than -3, the posterior probability of that model will be small.

- ---
~~~~~~~~~~~~~~~~~~~~: 

~~~~~~~~~ -
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Corollary 4.3 shows that the Bayesian method of model selection

also leads to picking models that have small residual sums of squares

(I.e., small Q).

The next section applies this theory to a time series of tem-

peratures of a chemical reaction [2, series C].

7. Analysis of Chemical Temperature Data

Computation of the posterior probabilities of’ binding constraints

Is given now for 226 successive readings of temperatures of a chemical

process [2 , series C) .  For this series Box and Jenkins tentatively

identify the number of differences to be d 1 or 2 [2, p.185].

The model with d = 2 (even when overfit ) is untenable based on the

goodness of . fit test, but the model with d 1 passes all the diag-

nostic tests [2, pp.292-31.

It is reasonable to restri.ct attention to AR(2) models only after

looking at the partial autocorrelation function. Thus, the prior dIs-

tribution is chosen in this case after some data analysis. Dickey [5]

advocates using an approximate prior after some “data crunching.”

After the identification stage of Box and Jenkins, one iight have

strong opinions about the parameters. As an operational (or reference)

prior, we employ the vague prior (5.3). The constants c4(s), which

determine the Bayes factors , are calculated from the limiting values of

Corollary 4.3. Table 1 gives the value of .t.~~(p ( s~ y) / p ( s ) )  for the

seven possible models . The logarithm of the Bayes factor for model

to s
~ 

is given by 2.~.(p(SjjY)/P (Sj) )  - ~~~~~~~~~~~~~~~~ Thus the

Bayes factors can be computed by subtractIon and then exponentiation.

Using the Bayes factor one can easily calculate posterior probabilities

for any choice of p(s) . The values for p(s) • 1/7 are given in

Table 1.

-- Table 1 about here --
- 

- 

~~~~~ •
-~~

- - - -~
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The table confirms the findings of Box and Jenkins that a single

difference is best, but a probability of .3 is assigned to the model

with no differences. The similarity in the estimates of the para-

meters 
~~~~~~ 

for the models corresponding to ci = 0 and d = 1

shows why it is difficult to pick between these models. Of course,

one might assign higher prior probability to higher differences (i.e.,

p((1})> p(none)) since this is an uncontrolled reaction.

. - . ... . -~~~--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Table 1 Bayesian Analysis of Tenperature of Chemical Reaction

53 Q L~ (p(s~y)/p(s)) p(s~y)

none 1.8017 -.8110 1.28 x 1O~~ 3.8778 247.937 .300

1 1.8090 -.8090 5.53 x lO~~ 4.0026 248.752 .678

2 -.0069 .9931 -2.16 x l0~~ 42.9~9 -18.962 0

3 1.9903 -l -1.79 x lO~~ 4.3059 237.863 0

1,2 0 1 -7.05 x io 2 43.005 -8.942 0

1,3 2 -1 -2.68 x l0~~ 4.4384 245.413 .022

2,3 -2 -1 11.91 14681 -662.237 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— ---.— -

~ 
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Abstract

This paper considers the general linear model when the parameter

space is subject to linear inequalities. Four examples satisfying

the assumptions are given. A Bayesian analysis of this model is pre-

sented using a natural conjugate prior density of the mixed type.

An analysis is given for the case that prior inform ation about the

parameters is vague. The Bayesian and sampling methods of model selec-

tion are compared in the case when little is known a priori.
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